

METEK HD

MANUAL DE USUARIO

RECOMENDACIONES DE USO Y PRESCRIPCIONES DE SEGURIDAD

Preste especial atención al símbolo de exclamación el cual se usa para indicar posibles riesgos a las personas o al propio equipo.

Preste especial atención al símbolo de consejo el cual se usa para indicar recomendaciones interesantes relacionadas con el equipo

Antes de operar con el equipo lea el manual de usuario y, especialmente, este apartado.

- El equipo está pensado para ser operado tanto en interiores como en exteriores. Evite en todo momento que le penetre suciedad y agua. El medidor soporta leves salpicaduras de agua pero existe la posibilidad que penetre agua en su interior.
- No someta el medidor a temperaturas extremas ni lo haga trabajar en rangos de temperatura que no estén dentro del rango de 0°C a 40°C.
- No someta el medidor de campo a fuerzas externas; No lo utilice de soporte ni se suba encima.
- No tape los espacios destinados a ventilación. La electrónica interna debe poder mantenerse ventilada.
- No intente cambiar la batería por sus propios medios. Llévelo al servicio técnico del fabricante.
- Trate al equipo con sumo cuidado pues siendo un medidor de campo, se trata de un instrumento de medición sensible.
- Respete el propósito de los puertos de comunicación; No los destine a otros propósitos.
- Mantenga su equipo limpio.

Riesgo eléctrico.

En condiciones de uso normal, este medidor no presenta riesgo eléctrico. Puede ser utilizado en instalaciones con categoría de sobretensión I

- Revise que su adaptador de corriente esté en buenas condiciones. Dicho adaptador de corriente es de clase II. Por razones de seguridad debe conectarse en líneas eléctricas con toma a tierra.
- Realice mediciones solamente en sistemas con el negativo de medida conectado potencialmente a tierra.
- Tenga en cuenta los márgenes eléctricos especificados tanto para tensiones como para radiofrecuencia.
- Recuerde que tensiones superiores a 70VDC o 33Vrms son potencialmente peligrosas para las personas.

El equipo está dotado con un atenuador interno de la señal de entrada. Este permite ajustar el nivel de señal al óptimo requerido por el demodulador de manera automática o manual.

No inyecte señales RF cuyo conjunto exceda los 130dBμV.

A título de referencia podrían ser 10 canales DVB-T con un nivel de señal de 120 dBμV o 30 canales DVB-T con un nivel de señal de 115 dBμV.

No inyecte señales con un nivel de tensión en continua superior a los \pm 30 VDC.

Versión del manual

Este manual ha sido editado en abril de 2019 basándose en la versión de FW número: 1.09.1660.

Consulte el Annexo III, Historial de actualizaciones de firmware para estar actualizado con las últimas funcionalidades del equipo.

Índice de Contenidos

Contenido del embalaje	6
2. Introducción	6
3. Descripción del equipo	7
3.1. Lateral superior	8
3.2. Lateral izquierdo	8
3.3 Lateral inferior	9
3.4 Panel frontal	9
3.4.1. Pantalla	9
3.4.2. Sensor de luz	9
3.4.3. Indicadores led de estado	10
3.4.4. Botonera inferior	10
3.4.5. Botonera superior	10
3.4.6. Rueda	11
3.4.7. Cursores	11
3.5. Alimentación	11
4. Primeros pasos	12
5. Menú	12
5.1. Ajustes radiofrecuencia	13
5.2. Navegación	13
5.3. Programas	14
5.4. Guardar y cargar	15
5.5. Herramientas	15
5.6. Configuración	18
6. Modo espectro	21
6.1. Selección de canal o frecuencia	21
6.1.1. Mediante botones	22
6.1.2. Mediante rueda	22
6.2. Ajuste del rango de frecuencias (span)	22
6.3. Filtro de resolución	23

6.4. Ajuste del nivel	23
6.5. Espectrograma	24
6.6. Función Max hold	24
6.7. Detector	25
7. Modo medidas	26
7.1. Lecturas	26
7.2. Espectro	28
7.3. Constelación	28
7.4. Video	28
7.5. Información del programa	28
7.6. Medición banda Lte	28
8. Modo televisión	30
9. Opciones	30
9.1. Opciones para el espectro	30
9.2. Opciones para las medidas	32
9.3. Opciones para el modo televisión	34
10. Actualización del firmware del equipo	36
11. Características técnicas	37
Anexo I. Definiciones	40
Anexo II. Tabla de canales y frecuencias	44
Anexo III. Valores esperables en toma de usuario	47
Anovo IV Historial do actualizaciones	17

1. Contenido del embalaje

El embalaje original contiene:

- Medidor de campo profesional DVB-S/S2, DVB-T/T2, DVB-C METEK HD.
- Cable cargador para coche.
- Adaptador de corriente 15V 2,5A.
- Adaptador F hembra F hembra intercambiable.
- Adaptador F hembra IEC hembra.
- Funda de transporte.

Accesorios incluidos en el embalaje

Le recomendamos que guarde el embalaje original pues es idóneo para su transporte por parte de terceros. En este supuesto póngalo igualmente en el interior de otra caja para protegerlo.

Los productos marcados con este logo no deben tirarse a la basura.

Deben llevarse a un punto de reciclaje especializado.

El envase de este producto es totalmente reciclable y gestionable por un sistema de control de residuos

2. Introducción

Metek HD es la primera generación de medidores de campo desarrollado por Ekselans by ITS íntegramente en Europa. Está pensado para cubrir las necesidades actuales de los profesionales de telecomunicación y ser una herramienta funcional, práctica y sencilla y adaptada a los estándares de transmisión y códecs actuales y futuros.

3. Descripción del equipo

El medidor de campo profesional Metek HD es un equipo diseñado para la medición de señales radioeléctricas transmitidas bajo los estándares DVB-S/S2, DVB-T/T2, DVB-C. Igualmente, permite la medición de señales en las bandas de telefonía móvil Lte1/4G y Lte 2/5G. El medidor realiza mediciones sobre el pocentaje del nivel de señal de potencia para WiFi 2,4GHz (IEEE 802.11 b/g/n)

El medidor presenta tres tipos de informaciones: las medidas propias de cada señal, visualización del espectro y reproducción de video (imagen y sonido). Estas informaciones serán representadas siempre que se usen señales que cumplan los estándares por los que el medidor está especificado tanto de transmisión DVB-S/S2, DVB-T/T2, DVB-C como de codificación: MPEG2, MPEG4, HAVC.

El medidor presenta una ergonomía especialmente diseñada para un correcto desempeño en campo. Tanto su peso, disposición de las teclas y conectores y características de la pantalla facilitan un alto rendimiento y eficacia profesional.

Una de sus características principales es la posibilidad de navegación mediante un grupo de programas o por frecuencia. En el primer caso, según el grupo seleccionado al moverse por los canales se sintonizarán únicamente los canales que pertenezcan al grupo, facilitando así una navegación más rápida. En el caso de navegar por frecuencia el usuario puede introducir directamente una frecuencia o desplazarse por todos los canales.

La navegación por grupo es útil cuando tengamos unos pocos canales en la banda de interés (satélite, terrestre o cable) y queramos comprobar que sus mediciones son correctas.

Otro aspecto fundamental para este medidor profesional es que incorpora un atenuador hardware automático variable de alta precisión. El objetivo del mismo es permitir la medición de potencias elevadas de señal de radiofrecuencia, medir cómodamente señales con una alta dinámica y hacer mediciones con precisión. El atenuador se puede ajustar para que trabaje automáticamente o fijarlo a un valor concreto.

El equipo está dotado de un sintonizador satélite capaz de detectar transmisiones DVB-S2 en multistream, medirlas y visualizar sus contenidos. Esta característica lo hace un buen aliado para poder realizar instalaciones satélite avanzadas.

El equipo permite detectar WiFi a 2,4GHz. Se muestra el nombre de los SSID disponibles, y sus parámetros básicos.

Entre sus funciones multimedia, puede almacenar capturas de pantalla y reproducir los contenidos de una memoria USB conectada.

El medidor de campo METEK HD

3.1. Lateral superior

En este lateral dispone únicamente de un conector F macho. Es conveniente dejarle conectado el adaptador deseado para su uso (típicamente F hembra-F hembra).

Este adaptador debe sustituirse si se tiene la sospecha que no hace buen contacto con el cable conectado.

Proteja en todo momento el conector F macho del propio medidor.

Detalle del lateral superior

3.2. Lateral izquierdo

En este lateral encontramos las siguientes conexiones:

Detalle del lateral izquierdo

- Entrada alimentación. Use este conector para cargar el medidor de campo
- Salida HDMI. El conector está especificado según el estándar HDMI 1.4A. Use este conector si quiere ver y escuchar el contenido de la imagen en otra pantalla.
- Conector USB hembra. El conector está especificado según el estándar
 2.0 y puede suministrar hasta 1A. Este está pensado para la conexión de una memoria externa pudiendo reproducir sus ficheros multimedia, guardar capturas de pantalla o guardar ficheros .TS recibidos.
- Puerto RS.232 (En conector Jack). Reservado para uso interno del servicio técnico.

3.3 Lateral inferior

En el panel inferior, se encuentra el altavoz. Este emite sonidos relacionados con la interacción con el medidor y reproduce el audio del video sintonizado.

3.4 Panel frontal

En el panel frontal encontramos los siguientes elementos.

Detalle del panel frontal

3.4.1. Pantalla.

La pantalla tiene una resolución de 1024 x 600 píxeles y un tamaño de 7". Su alta luminosidad es muy adecuada frente a condiciones de luz adversas. Su gran tamaño también facilita la lectura de las mediciones y visualización del espectro e imagen.

3.4.2. Sensor de luz.

Este fotodetector permitirá al medidor ajustar el brillo de la pantalla adaptando su luminosidad a las condiciones ambientales.

3.4.3. Indicadores led de estado.

POWER	Indica si el medidor está encendido, suspendido o apagado Estático: Encendido Apagado: Apagado completamente con mínimo consumo de la batería Parpadeo: El medidor está suspendido. Note que en este estado se consume la batería* *Aproximadamente el 50% menos que cuando está encendido	
RF POWER	Indica si el dispositivo está recibiendo potencia en la frecuencia sintonizada	
LOCK	Indica si el dispositivo está enganchado a una señal	
CHARGE	Indica si el dispositivo se está cargando	

3.4.4. Botonera inferior

VALORES NUMÉRICOS	Permiten la introducción de valores como frecuencias directamente
MENU	Accede al menú principal
OPTIONS	Accede a las posibles opciones en el contexto de la pantalla actual
BAND	Le permite conmutar de estándar y banda rápidamente. Note que la banda CABLE se puede dejar de mostrar según los ajustes RF
ESC	Vuelve atrás
	Permite realizar una captura de pantalla y guardarla en la memoria USB externa

3.4.5. Botonera superior

O	Apaga, suspende y enciende el dispositivo Presión durante 2s: Apaga / enciende el equipo Presión durante 1s estando encendido: Suspende el equipo Presión durante 1s estando suspendido: Enciende el equipo *La configuración de estos botones se puede modificar en: configuración > modo apagado
Ä	Conmuta al modo monitor. En este estado se podrá ver la imagen así como sus características. Presionar consecutivamente este botón para mostrarlas o no
M	Conmuta al modo analizador de espectros. Al presionarlo se preconfigurar los valores a ser mostrados tanto en nivel como en frecuencia
	Conmuta al modo medidas. En este estado se visualizan las medidas correspondientes a la banda de transmisión en la que se está trabajando y también un cuadro más pequeño donde se puede ver la imagen, la constelación o la información del programa. (Presionar izda – derecha para conmutar la información contenida en este cuadro)

3.4.6. Rueda

Un elemento para la interacción con el medidor es la rueda. Esta permite ajustar valores y confirmarlos al presionarla.

La rueda dispone de detección de aceleración. Es decir, una vez detecta una inercia creciente, los saltos de los valores que está incrementando o decrementando, también aumentan.

El sentido de la rueda puede ajustarse para que sea horario o antihorario. Ver capítulo 5.6. Configuración (Ajustes sistema).

3.4.7. Cursores

Los cursores 🔻 🐧 🕟 permiten desplazarse por los menus y pantallas similares

Estando en modo espectro, horizontalmente, permiten aumentar y decrementar el span.

Estando en modo televisión, verticalmente, permiten cambiar de programa y horizontalmente permiten ajustar el volumen.

3.5. Alimentación

El medidor de campo está dotado con una batería de 7,4V - 7800mAh. Esto le confiere una autonomía de unas 6h sin alimentar a otros equipos conectados a la entrada RF (LNB, amplificador de mástil,...)

La carga de las baterías puede realizarse tanto con el medidor en funcionamiento como apagado. En el caso de que esté funcionando el tiempo de carga será mayor.

Cuando está en funcionamiento el LED POWER permanecerá encendido.

Cuando está suspendido el LED POWER parpadeará.

Durante el proceso de carga de la batería el LED CHARGE permanecerá encendido hasta que se cargue, momento en el que el LED se apagará.

Note que en el estado de suspensión (y no apagado) existe un consumo de batería mayor al que si estµViera apagado. En cualquier caso en el estado suspendido consume aproximadamente el 50% menos que cuando está encendido.

Cargar la batería por completo con el adaptador suministrado puede requerir 6h. Téngalo presente antes de acudir a la instalación.

En el supuesto que el equipo se quedara sin responder a los botones puede mantener pulsado el botón durante 2 segundos. En este caso se apagará y podrá ser reiniciado normalmente.

4. Primeros pasos

Antes de empezar, cargue el medidor por completo. Al salir de fábrica la batería está con la carga al máximo pero puede llegar descargada.

Al ponerlo en marcha aparecerá en la pantalla el logotipo EK mientras se termina de cargar el firmware que le permitirá trabajar con el medidor. Puede usar la función suspender para que este proceso de inicialización dure menos tiempo. Note que en el estado suspendido, el consumo de la batería será mayor que cuando esté completamente apagado.

Realice las preconfiguraciones deseadas para que lo tenga ajustado a sus preferencias.

Antes de enchufar el cable con la señal de entrada tenga muy en cuenta donde lo enchufa. Verifique que los niveles de tensión continua y potencia no superan los límites máximos especificados para el medidor

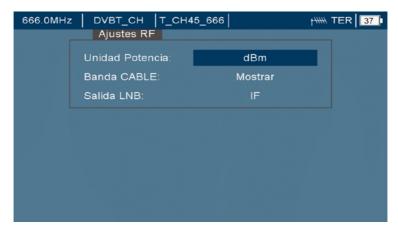
Recuerde que el equipo está protegido frente tensiones de hasta ±30 Vdc pero tenga en cuenta que si hay tensión en la línea y alimenta con el medidor provocará un mal funcionamiento. Igualmente, no es aconsejable conectar un nivel de señal de radiofrecuencia superior a los 130 dBμV.

Una vez conectada una señal de entrada, elija la banda de trabajo (satélite, terrestre o cable) con el botón

A partir de este momento, de manera intuitiva ya podrá empezar a sacar partido de su medidor de campo. Para un rendimiento mayor le animamos a seguir leyendo los próximos apartados de este manual.

5. Menú

Desde la tecla es posible acceder a todas las funciones y ajustes del medidor de campo.



Opciones del menú principal

5.1. Ajustes radiofrecuencia

En este menú es posible ajustar los siguientes parámetros en banda terrestre:

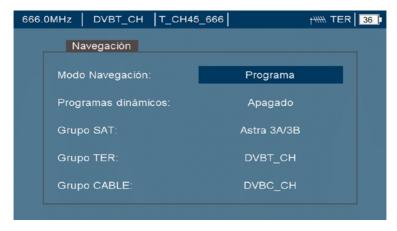
- Unidad Potencia. A elegir entre dBµV y dBm.
- Salida LNB. Indica la frecuencia original (RF) antes de haber sido convertida por la LNB a una frecuencia intermedia (IF). La señal original RF se calcula con la información del oscilador local.
- Tipo LNB: Universal, Unicable, DCSS, Quattro, Digiturk
- Parámetros LNB: Universal, 9.750/10.750, 5.150/5.750, 5.750/5.150

Pantalla de ajustes de RF

Note que según la banda de trabajo, las opciones de cada menú pueden variar.

5.2. Navegación

El medidor de campo ofrece dos modos de navegación:


- Modo frecuencia. El medidor sintoniza una frecuencia ya sea introducida mediante el teclado numérico o bien mediante la rueda.
- Modo Programa. El medidor sintoniza los canales que existen en los planes creados (o los que se puedan crear por parte del usuario). Un plan es una lista de canales (frecuencias) sin que necesariamente estén todos.

La navegación por frecuencia es rápida si somos conocedores de las frecuencias a analizar. La navegación por programa es útil al trabajar con una señal radioeléctrica específica como puede ser: En una zona donde se reciben unos canales terrestres concretos, cuando se trabaja con los canales de una red de operador de cable o cuando se trabaja habitualmente con un satélite y solo interesa medir unos transponders en concreto. Estos canales están

agrupadas formando un grupo que deberemos seleccionar para trabajar con él. Existe un grupo creado para cada banda (Terrestre, satélite y cable).

Desde el menú principal, presionando programas podemos crear, modificar y borrar grupos y programas nuevos. También es posible crearlos a partir de la navegación: Una vez sintonizado un programa, es posible agregarlo a un grupo definido. Los grupos pueden asociarse a una banda de navegación (Grupo SAT, TER y CABLE).

Cuando se trabaja en modo programa, es posible trabajar en modo dinámico. El modo dinámico almacena los parámetros de medida y visualización de un determinado canal. De esta manera siempre se visualizará o medirá acorde a la última sintonización de dicho canal.

Pantalla de Navegación

5.3. Programas

Estando en el menú principal, presionando la opción programas, es posible hacer ajustes sobre los programas y grupos almacenados en el medidor.

Pantalla de programas

Seleccionando un grupo o un programa, presione la tecla optiones para luego decidir que hacer con él. Las opciones de exportar e importar permiten almacenarlos o cargarlos desde en una memoria USB.

5.4. Guardar y cargar

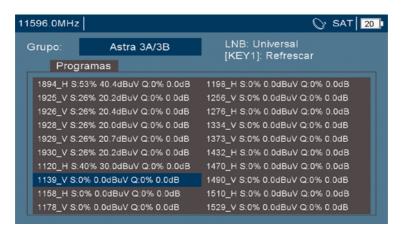
Desde el menú principal, podemos acceder a la opción de guardar y cargar. Esta nos permite hacer operaciones de traspaso de información entre el medidor, una memoria USB conectada y el propio medidor de campo.

Pantalla de guardar y cargar

- USB. Permite abrir el navegador que accede a los ficheros contenidos en la memoria USB.
- Copia del sistema a USB. Permite almacenar los valores actuales del medidor de campo.
- Restaurar sistema desde USB. Lee el fichero almacenado en a memoria USB con los ajustes y configuraciones almacenados en este fichero.

Estas dos funciones anteriores son útiles si varios instaladores utilizan el mismo medidor de campo. Antes de dejarlo, puede copiar el sistema en un fichero dentro de la memoria USB. Una vez lo reciba, usado y caracterizado por un tercero, puede restaurar el sistema desde la memoria USB.

- Restaurar grupo actual. Permite dejar un grupo tal y como se generó.
- Valores de fábrica. Inicializa los valores ajustables por parte del usuario como si no hubiera editado ninguno.


5.5. Herramientas

Estando en el menú principal, presionando la opción herramientas, es posible usar distintas funcionalidades que ofrece el medidor.

Pantalla de herramientas

 Control de paquetes. Permite determinar la calidad de los paquetes de video recibidos. Es un proceso cíclico.

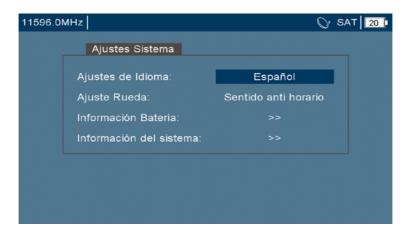
Medida de los paquetes satélite recibidos de este grupo

 Buscador de satélites. Tiene la función de identificar el satélite al que se está conectado.

Proceso de identificación de satélites en curso

- Grabación .TS. Una vez sintonizado con un programa permite guardar ficheros .TS en la memoria USB conectada. Para terminar la grabación presioanr la tecla
 - Es necesario utilizar una memoria USB que soporte velocidades de escritura continua superiores a los 10 MBps y especificada como mínimo a USB 2.0
- DCSS UB Search. Permite detectar las distintas portadoras que un multiconmutador DCSS conectado al medidor es capaz de generar. Para que esta herramienta funcione es necesario que el multiconmutador sea compatible con el DiSEqC 2.0

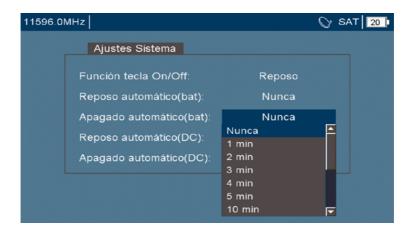
Búsqueda de portadoras DCSS


5.6. Configuración

Desde el menú principal, podemos acceder a la opción de configuración. Esta nos permite hacer ajustes del medidor de campo y ver su estado.

Pantalla de configuración

 Ajustes del sistema. Permite aplicar y determinar parámetros básicos de interacción con el medidor como el idioma, sentido de la rueda, estado de la batería y información del medidor (número de serie, versiones de software, fecha del software,...)



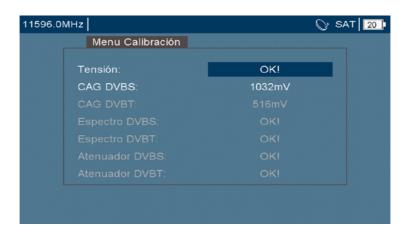
Pantalla ajustes del sistema

Pantalla ajustes del sistema / Batería e información del sistema

- Modo apagado. Permite determinar en qué condiciones se apaga y enciende el medidor de campo para optimización de la batería.
 - Función tecla ON/OFF: permite configurar la forma en que se apaga el equipo. Por defecto, estando el equipo encendido, al pulsar el botón el equipo entra en reposo. Se puede configurar que al pulsar el botón el equipo se apague directamente
 - Los modos **reposo y apagado automático** permiten configurar si el medidor pasará en modo reposo o se apagará automáticamente tras un tiempo de inactividad. los dos primeros ajustes son para el medidor en modo batería, mientras que los dos últimos son para el caso en el que el medidor esté alimentado con la fuente de alimentación externa.

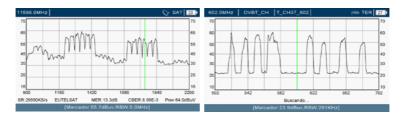
Pantalla ajustes del modo apagado

 Ajustes de pantalla. Permite ajustar la pantalla automáticamente o por defecto (Brillo, contraste, iluminación).


Pantalla ajustes de la pantalla

 Red. Permite realizar funciones básicas en un entorno WiFi. Detectar redes WiFi, Configurar el interfaz WiFi, descarga de ficheros ftp o realizar ping en la propia red.

Pantalla con funciones de red


 Menú calibración. Ofrece opciones avanzadas para la calibración del dispositivo.

Pantalla de calibración

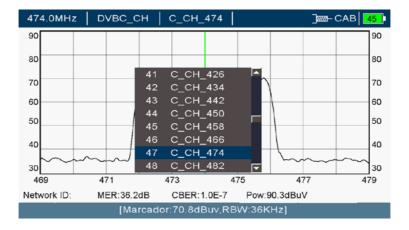
6. Modo espectro

Esta función permite la visualización de los niveles de señal en el dominio frecuencial. Es una función básica en la operatoria del medidor para la interpretación de las señales presentes en la línea.

Espectro de señales satélite y terrestre

Cuando la portadora esta enganchada se indican los siguientes parámetros en el pie del espectro (según la banda de trabajo): Symbol rate, MER, CBER, Potencia y Operador.

6.1. Selección de canal o frecuencia


Al seleccionar una frecuencia, el medidor de campo intentará demodularla midiendo sus niveles. Note que según el estándar asociado usted intentará seleccionar un ancho de banda que forma un canal (y no únicamente una sola frecuencia). En satélite hablamos de transpondedor y en terrestre y cable hablamos de mux.

Para seleccionar una frecuencia o canal puede girar tanto con la rueda como introducir un número con el teclado numérico.

6.1.1. Mediante botones

En caso de estar en modo frecuencia, introduzca el valor numérico de frecuencia a sintonizar y presione (SS)

En caso de estar en modo programa, al presionar un botón numérico se le abrirá una ventana donde podrá seleccionar el siguiente canal a sintonizar:

Detalle de la selección del canal en modo programa

6.1.2. Mediante rueda

Estando en modo frecuencia, si está cerca de la siguiente frecuencia a sintonizar puede ir avanzando o retrocediendo con la rueda.

Estando en modo programa, girando la rueda adelantará o retrocederá hacia el siguiente canal registrado en el programa.

Cambiando de frecuencia iremos desplazándonos por el espectro. Note que en la navegación por programa, en la posición central de la pantalla se visualizará la frecuencia seleccionada mientras que en la navegación por frecuencia, el cursor se irá desplazando adelante y atrás en el espectro.

6.2. Ajuste del rango de frecuencias (span)

El span es el conjunto de frecuencias que se pueden ver en la pantalla. Un span elevado permitirá visualizar de forma rápida todo el espectro y hacerse una idea de la señal total de radiofrecuencia que se está recibiendo. Un span reducido, le permitirá fijarse en detalles sobre frecuencias concretas.

Los posibles valores de span dependen de la banda de trabajo y son:

Satélite	10, 20, 50, 100, 200, 500, 1200 MHz
Terrestre	10, 20, 50, 100, 200, 500, 950 MHz
Cable	10, 20, 50, 100, 200, 500, 950 MHz

El ajuste de este rango se realiza mediante:

- La frecuencia o canal sintonizado
- Permite ampliar el span
- Permite reducir el span

6.3. Filtro de resolución

Este filtro es un elemento fundamental en el espectro. Nos viene a indicar la distancia entre dos portadoras que es capaz de discernir. Con valores altos tendremos una muy baja resolución y con valores bajos tendremos mayor resolución, ponderando la potencia entre pocas frecuencias. Sus posibles valores son:

Satélite	100KHz, 200KHz, 500KHz, 1Mhz, 2Mhz, 5Mhz
Terrestre	36KHz, 72KHz, 145KHz, 291KHz, 583KHz, 1166KHz
Cable	36KHz, 72KHz, 145KHz, 291KHz, 583KHz, 1166KHz

El ajuste de este filtro es automático para asegurar un tiempo de barrido óptimo según el span seleccionado. Tenga pues en cuenta que, si requiere mucha resolución, debe haber seleccionado un span reducido.

Un filtro de resolución estrecho mostrará las portadoras con menos nivel que un filtro ancho.

El nivel mostrado en el marker es el nivel detectado con el filtro de resolución seleccionado. La medida de potencia que se muestra es la potencia del canal y no depende del filtro de resolución seleccionado.

6.4. Ajuste del nivel

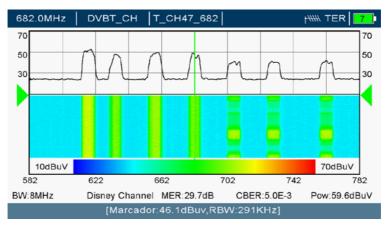
El nivel de referencia es el valor máximo de señal que podemos observar sin distorsionar las medidas. Este nivel lo veremos a la izquierda del espectro indicado.

Este se ajusta automáticamente según el nivel de las señales de radiofrecuencia que se visualizan en la pantalla con los atenuadores automáticos del medidor. La atenuación máxima es de 45dB y se ajusta en pasos de 5dB.

Es posible fijar la atenuación de la señal de entrada de manera manual. Esto es útil frente a señales mal ecualizadas o con niveles elevados fuera de la banda de trabajo. El conjunto de señales de entrada que se visualizan en pantalla se pueden atenuar 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 dB.

El ajuste del atenuador es independiente para cada banda: Se puede estar en

banda terrestre con el atenuador manual y en banda satelite con el atenuador automático. Cada vez que se cambie de banda se ajustará el atenuador.


6.5. Espectrograma

Esta función le permite visualizar el nivel de señal en un ancho de banda (el conjunto de la pantalla) a lo largo del tiempo (Aproximadamente 2 minutos).

Esta función es interesante a la hora de ver los cambios de nivel de señal a lo largo del tiempo. Algunas de sus aplicaciones son:

- Detección de señales no deseadas (intermodulación, interferencias)
- Visualización de la señal durante el ajuste de equipos activos
- Efectos en la línea tras conectar más señales
- Detectar fluctuaciones en el nivel de señal

Una aplicación típica es la detección de fadings o esvanecimientos.

Efecto de un fading, donde los tres canales altos sufren variaciones en su nivel de señal.

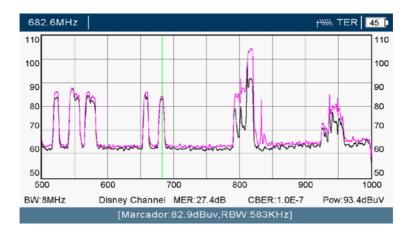
6.6. Función Max hold

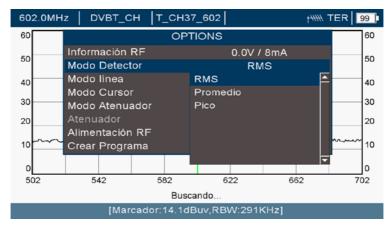
La función max hold permite capturar el nivel máximo de señal obtenido durante el periodo de observación. En este estado se solapa una línea a tiempo real y una segunda línea acumulando el valor máximo obtenido para cada frecuencia.

Su uso suele emplearse para:

- Medir el nivel máximo que alcanza una señal
- Detectar interferencias esporádicas
- Ver la diferencia de nivel lograda tras ajustar la ganancia o pendiente de un amplificador de línea (De especial interés en satélite).

En la siguiente imagen puede observarse la captura de una interferencia 4G:




Imagen con siete muxes TDT y los picos máximos de la telefonía móvil 3G/4G.

Ponga el atenuador en manual si observa que la señal acumulada desaparece y vuelve a iniciarse la traza. Esto sucede porque la dinámica (diferencia entre señal máximo y mínimo medido) es superior. Fijándola, conseguirá acumular los niveles máximos.

6.7. Detector

El medidor ofrece tres maneras de detectar la señal de radiofrecuencia: RMS, promedio y pico.

Las medidas de pico suelen emplearse para detectar señales espúreas. Las medidas en promedio suelen emplearse para promediar el nivel de ruido del canal y finalmente, las medidas RMS se emplean para medir la potencia del canal (es el caso más habitual).

Selección del tipo de detector de la señal RF

7. Modo medidas

Tras presionar el botón se pueden visualizar todas las mediciones propias del canal que se está sintonizando (Satélite, terrestre o cable). En el caso de estar sintonizando una señal con los niveles apropiados, esta se enganchará y se ofrecen los valores de medida.

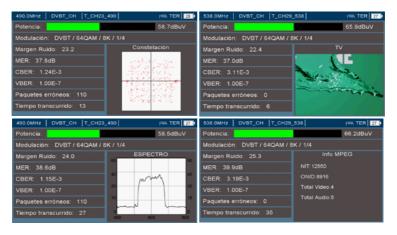
7.1. Lecturas

Las lecturas se ofrecen de manera resumida en una única pantalla con opción de ver varias interpretaciones de la señal de manera simultánea.

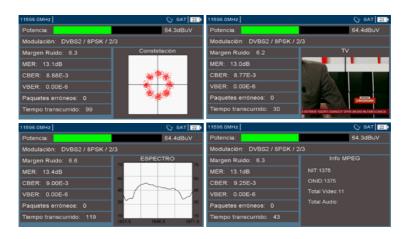
Las lecturas son fundamentales para entender y adaptar la instalación que estamos realizando. Nos permiten acotar posibles problemas y dirigirnos hacia atrás (hacia la antena) o hacia adelante si todo es correcto.

Consulte el Anexo III para ver los niveles esperables en toma recomendados para cada estándar.

Las medidas que se ofrecen son:


- Potencia. La barra indica el nivel de potencia medido en esta frecuencia (canal) y se mantiene de color verde si la señal está enganchada. Deseable un valor apropiado acorde al punto de medida de la instalación.
- Modulación. Indica la modulación digital y otros parámetros propios (Según estándar) detectados.
- Margen de ruido. Indica el nivel de ruido tolerable de más antes de perder la sincronización con la señal. Deseable un valor alto. Cuando se llega a los 0dB la imagen empieza a pixelar.
- MER. Indica la tasa de error de modulación. Deseable un valor alto.
- CBER. Indica la tasa de error de bit del canal (Antes de aplicar corrección).
 Deseable un valor bajo. Como ejemplo, un valor de 4.3E-6 es más bajo que un valor de 2.1E-5 y por lo tanto, mejor.
- VBER. Indica la tasa de error de bit de la señal resultante (Después de haber aplicado corrección). Deseable un valor más bajo todavía que el anterior. Como ejemplo, un valor de 4.3E-6 es más bajo que un valor de 2.1E-5 y por lo tanto, mejor.
- Paquetes erróneos. Indica los paquetes de datos que no se pueden corregir pero que se descartan con error. Estos en casos extremos, son causados por errores tipo burst que afectan a un breve periodo de tiempo de la transmisión. Note que realizando conexiones físicamente con el cable de antena, puede causar paquetes erróneos en el momento de conectar y desconectar. Deseable un valor cero.
- Tiempo transcurrido. Indica el tiempo desde que el demodulador ha sintonizado una señal. Se muestra para relacionarlo con los paquetes erróneos.
 Deseable que en el tiempo transcurrido de medición, no haya habido paquetes erróneos.
 - **☆**

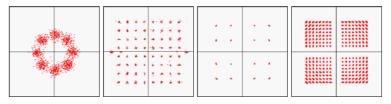
Cuando se visualizan las medidas junto la imagen del video no es


posible cambiar de programa ni ajustar el volumen. Debe entrar en modo televisión con la tecla para poder ver y escuchar esta información.

Con los botones — — puede cambiar la información mostrada en la pantalla derecha, pudiéndose mostrar:

- Constelación de la señal recibida
- Video de la señal recibida
- Espectro del canal sintonizado
- Información de la señal recibida.

Visualización de varias informaciones en la pantalla derecha de señal DVB-T


Visualización de varias informaciones de una señal DVB-S2

7.2. Espectro

Permite ver visualmente la forma de la señal. Esto es útil para entender si llega con calidad suficiente o puede tener absorciones o atenuaciones que provoquen unos niveles incorrectos de calidad de señal.

7.3. Constelación

La constelación se emplea para observar la recepción de los símbolos modulados en radiofrecuencia. Su aspecto está muy ligado a la medida del MER.

Constelaciones de varios tipos de modulación: 8PSK, COFDM, 16QAM v 256QAM

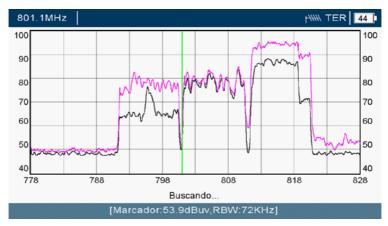
7.4. Video

Permite visualizar la señal final tal y como se vería en un televisor. Es de ayuda para ver si la instalación es correcta o no, aunque no es definitivo pues es posible se puedan realizar actuaciones para mejorar la calidad de la señal de radiofrecuencia que transporta esta señal de video.

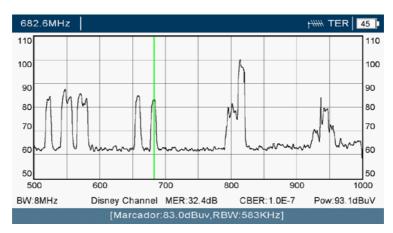
7.5. Información del programa

Indica valores de NIT y ONID propios de la red de la que estamos recibiendo. Estos son propios del operador de la red. Note que si en su instalación existen equipos de procesado de señal (transmodulador) es posible que estos parámetros se hayan modificado.

Indica también el número de servicios que incluye este canal de radiofrecuencia (video y radios).


7.6. Medición banda Lte

Gracias al espectro ampliado hasta 1 GHz, es posible realizar mediciones de la potencia recibida de señal de telefonía, ya sea 4G o 3G (Y en el futuro, 5G). Actualmente, estas tecnologías para la red móvil tienen estas frecuencias reservadas:


		Uplink	Downlink
	3G (GSM900)	890 - 915 MHz	935 - 960 MHz
Lte1	4G (Banda 700)	832 - 862 MHz	791 - 821 MHz
Lte2	5G	694 - 790 MHz	

El canal de uplink es el que utilizan los terminales móviles para mandar los datos a la estación base. El canal downlink es el canal opuesto. Note que todos los terminales móviles enlazados a una estación base utilizan estos canales mediante técnicas de TDMA

Con el medidor podemos ver el espectro recibido (ya sea en antena o en toma) y medir las potencias. Tenga en cuenta que estas potencias aparte de poder generar interferencias, pueden mermar el rendimiento de los amplificadores instalados en la red de distribución por cable coaxial del edificio.

Medición en cabecera de una señal interferente 4G. (Se observan los canales de bajada)

Medición en cabecera incluyendo señales 3G y 4G (Se observan los canales de bajada junto a canales DVB-T)

El nivel mostrado en el marker es el nivel detectado con el filtro de resolución seleccionado. La medida de potencia que se muestra es la potencia del canal y no depende del filtro de resolución seleccionado.

8. Modo televisión

Al presionar la tecla , puede visualizar y escuchar la señal de video. De una forma visual podrá observar si se producen pixelaciones en la señal medida

Visualización del video con o sin información sobreimpresionada

Por defecto sale sobreimpreso información acerca del tipo de señal. Para quitar esta sobreimpresión, vuelva a pulsar la tecla . Vuelta a presionarla para que aparezca de nuevo.

Para cambiar de programa presione by . Para ajustar el volumen y .

Si la señal está codificada (Encriptada), aparecerá un indicativo sobreimpreso.

METEK está dotado de los últimos códecs para la decodificación de señales (tanto su video como su audio). En caso de no interpretar ninguno de ellos, consulte si el códec de la señal es compatible con los del medidor.

Esto es interesante en el caso de medir la salida de un transmodulador de satélite a terrestre. Si se miden buenos parámetros de MER y BER en la salida del transmodulador pero la señal sigue pixelando pensaremos que el problema está en alguno de estos tres puntos: A) la calidad de la señal satélite recibida y deberemos de hacer reajustes en la orientación de la antena parabólica. B) La modulación de salida del transmodulador (será necesario ajustarla). C) Un número de servicios (ancho de banda) excesivo y en este caso será necesario reducir el número de servicios en cada canal RF de salida.

9. Opciones

Estando en cualquier modo de trabajo (Espectro, medida, televisión), es posible entrar en las opciones que nos van a permitir realizar ajustes sobre la información visualizada en pantalla. Presionar la tecla options para verlas:

9.1. Opciones para el espectro

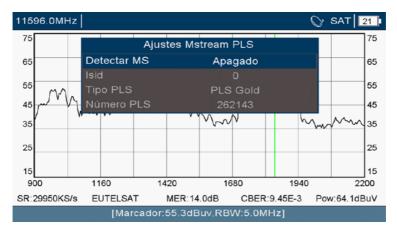
Tras presionar el botón estando en modo espectro podemos observar distintos parámetros relacionados, ya sean informativos o de ajuste.

Según la banda en la que está el medidor (Satélite, terrestre o cable) estos parámetros pueden variar ligeramente.

Opciones posibles en modo espectro estando en la banda satélite

 Información RF. Mide con alta precisión la tensión disponible a la entrada del medidor y la corriente que circula a través de él. Según la carga en continua (resistencia óhmica) de la instalación: Tipo de LNB, conmutadores DiSEqC, longitud del cable coaxial, este consumo será menor o mayor. Es un parámetro indicativo.

En caso de cortocircuito, el medidor dejará de generar tensión.


Revise su red. Si no hace falta alimentarla desde el medidor, sencillamente seleccione 0V como tensión de alimentación.

- Modo detector. La manera como la señal RF es capturada. Consulte el capítulo 6.7. Detector para más información.
- Modo línea. Indica como se representa la señal RF. Línea, max peak o espectrograma. Habitualmente estará en línea y con ella se representa el nivel de señal. Consulte el capítulo 6.5. Espectograma para más información.
- Modo cursor. Indica como los marcadores verticales son representados.
- Modo atenuador. Permite seleccionar entre atenuador manual y atenuador. automático. Observe si está en modo programa, navegación automática pues puede quedarse almacenado un valor concreto para cada canal.
- Atenuador RF. Permite fijar, estando en atenuador manual, el nivel de atenuación deseado.
- Alimentación RF. Permite forzar una alimentación de salida hacia amplificadores de mástil, amplificadores de línea y LNBs y conmutar entre ellos usando el protocolo DiSEqC. Consulte los valores de alimentación en la tabla de características técnicas. También permite elegir la banda de trabajo forzando o apagando el tono a 22KHz.

Selección de la alimentación de la antena

- Permite agregar el programa actual a un grupo de programas.
- Ajustes Mstream PLS. Permite determinar la autodetección de servicios multistream en una transmisión DVB-S2. Tenga en cuenta que la demodulación de estas es un poco más lenta que una transmisión DVB-S2 convencional.

Ajustes de los parámetros de multistream

9.2. Opciones para las medidas

Tras presionar el botón options estando en modo televisión podemos observar distintos parámetros relacionados, ya sean informativos o de ajuste:

Opciones posibles en modo medidas estando en la banda satélite

 Información RF. Mide con alta precisión la tensión disponible a la entrada del medidor y la corriente que circula a través de él. Según la carga en continua (resistencia óhmica) de la instalación: Tipo de LNB, conmutadores DiSEqC, longitud del cable coaxial, este consumo será menor o mayor. Es un parámetro indicativo.

En caso de cortocircuito, el medidor dejará de generar tensión.

Revise su red. Si no hace falta alimentarla desde el medidor, sencillamente seleccione 0V como tensión de alimentación.

- Resetear contador error. Permite inicializar a cero el número de paquetes erróneos y tiempo de medida
- Modo atenuador. Permite seleccionar entre atenuador manual y atenuador. automático. Observe si está en modo programa, navegación automática pues puede quedarse almacenado un valor concreto para cada canal.
- Modo representación. Permite elegir la pantalla a visualizar en el cuadrante derecho inferior. A elegir entre: Televisión, espectro, medidas, información del programa
- Modo SR. Permite elegir entre autodetección del symbol rate o poderlo fijar manualmente
- SR Manual (KS/s). Permite introducir manualmente el symbol rate (Si así se ha habilitado en "Modo SR").
- Alimentación RF. Permite forzar una alimentación de salida hacia amplificadores de mástil, amplificadores de línea y LNBs y conmutar entre ellos usando el protocolo DiSEqC. Consulte los valores de alimentación en la tabla de características técnicas. También permite elegir la banda de trabajo forzando o apagando el tono a 22KHz.
- Zumbador. Permite activar el altavoz para que el usuario perciba los resultados de la interacción con él.

- Crear Programa. Permite añadir el programa sintonizado en un grupo
- Ajustes Mstream PLS. Permite determinar la autodetección de servicios multistream en una transmisión DVB-S2. Tenga en cuenta que la demodulación de estas es un poco más lenta que una transmisión DVB-S2 convencional.

9.3. Opciones para el modo televisión

Tras presionar el botón estando en modo televisión podemos observar distintos parámetros relacionados, ya sean informativos o de ajuste:

Opciones posibles en modo televisión estando en la banda satélite

- Información RF. Indica la tensión disponible a la entrada del medidor y la corriente que circula a través de él. Según la carga en continua de la instalación (tipo de LNB, conmutadores DiSEqC, longitud del cable coaxial), este consumo será menor o mayor. Es un parámetro indicativo.
 - En caso de cortocircuito, el medidor dejará de generar tensión. Revise su red. Si no hace falta alimentarla desde el medidor, sencillamente seleccione 0V como tensión de alimentación.
- Control volumen. Ajusta el nivel de volumen del altavoz. Tambien puede utilizar las teclas v. .
- Seleccionar audio. Si el servicio contiene más de un audio, permite cambiar entre los disponibles:

Selección de los audios de un programa

 PID manual. Si el servicio no aporta suficiente información para que el receptor pueda encontrar los PID, en esta pantalla se pueden fijar. También permite fijar el tipo de códec con la que la información digital de video y audio están codificados:

Selección de los PID de video y audio de un programa y sus códecs

- Seleccionar servicio. Permite cambiar el servicio (incluyendo audio y vídeo) de todos los que hay en este canal de radiofrecuencia.
- Modo atenuador. Permite seleccionar entre atenuador manual y atenuador. automático. Observe si está en modo programa, navegación automática pues puede quedarse almacenado un valor concreto para cada canal.
- Atenuador RF. Permite fijar, estando en atenuador manual, el nivel de atenuación deseado.
- Symbol rate. Permite fijar la velocidad de recepción de los símbolos. Por norma general el demodulador podrá determinarla. De no ser así, es posible introducirlo manualmente.
- Alimentación RF. Permite forzar una alimentación de salida hacia amplificadores de mástil, amplificadores de línea y LNBs y conmutar entre ellos usando el protocolo DiSEqC. Consulte los valores de alimentación en

la tabla de características técnicas. También permite elegir la banda de trabajo forzando o apagando el tono a 22KHz.

Selección de la alimentación de la antena

- Crear programa. Permite agregar el programa actual a un grupo de programas.
- Ajustes Mstream PLS. Permite determinar la autodetección de servicios multistream en una transmisión DVB-S2. Tenga en cuenta que la demodulación de estas es un poco más lenta que una transmisión DVB-S2 convencional.

10. Actualización del firmware del equipo

Recomendamos mantener el medidor actualizado. Las actualizaciones incluyen mejoras en el software para facilitar el manejo al instalador de telecomunicaciones. Igualmente recogen los cambios que pueda haber en los satélites. Así la identificación de satélites siempre será más fiable.

Para actualizar su medidor:

- Descargue la última versión disponible en la web www.ek.plus. La actualización está contenida en un fichero. BIN
- Guarde este fichero en una memoria USB
- Inserte la memoria USB en el medidor y localice el fichero desde Guardar y cargar / USB
- Localice el fichero en el directorio y confírmelo
- Una vez terminado el proceso de actualización se reiniciará

En el anexo IV, quedan documentadas las versiones y las mejoras de cada software publicado.

11. Características técnicas

CARACTERÍSTIC	CARACTERÍSTICAS TÉCNICAS				
Monitor	7" pulgadas TFT				
Resolución (píxeles)	1024*600				
Batería	Litio 7.4 V / 7800 mAH / 57.7 Wh				
Entrada RF	Conector F macho 75 Ω				
Salida Audio/Vídeo	HDMI Output				
Alimentación sumin	istrada desde el medidor				
Banda satélite	0 V, 5 V~24 V (en pasos de 1 V)				
Tono 22KHZ	Seleccionable según la banda de satélite				
Generador DiSEqC	DiSEqC 1.0/1.1/2.0				
Terrestrial Band	0 V, 5 V~24 V (en pasos de 1 V)				
Duración máxima de la batería	6 horas				
Corriente de apagado (power off)	<2 mA				
DECODIFICACIÓN DE	VÍDEO				
DECODIFICACIÓN	MPEG1, MPEG-2 MP@ML, H.264, VC1, DV, MPEG-4, H.265 (1080p@60fps)				
DECODIFICACIÓN DE	AUDIO				
DECODIFICACIÓN	MPEG-2 layer I and II (Musiccam), MPEG4 AAC				
MODO DE SALIDA	Mono, Dual Channel, Stereo, Joint Stereo				
MODO DE MEDIC)A				
Satélite					
Rango de frecuencias	950~2150 MHz				
Valores	Potencia del canal, margen de ruido, MER, CBER, VBER, errores TS y constelación				
Symbol rate	1 ~ 55 MS/s				
Resolución de potencia	0.1 dB				
Precisión	±3 dB				
Rango MER	>25 dB				

Rango potencia	20~120 dBμV
Demodulación	DVB-S/S2 QPSK, 8PSK, 16APSK, 32APSK, ACM / VCM
Terrestrial	
Rango de frecuencias	51 ~1000 MHz
Valores	Potencia del canal, margen de ruido, MER, CBER, VBER, errores TS y constelación
Ancho de banda	6 MHz, 7 MHz, 8 MHz
Resolución de potencia	0.1 dB
Precisión	±3 dB
Rango MER	>35 dB
Rango potencia	30~120 dBμV
Demodulación	DVB-T/T2 COFDM
Cable	
Rango de frecuencias	51~1000 MHz
Valores	Potencia, CBER, VBER, MER, Constelación
Symbol rate	6 MS/s

Resolución de potencia	0.1 dB			
Precisión	±3 dB			
Rango MER	>35 dB			
Rango potencia	30~120 dBμV			
Demodulación	DVB-C QAM,J83 Annex C QAM			
MODO ANALIZA	MODO ANALIZADOR DE ESPECTROS			
Rango de	Terrestre y Cable: 50 - 1000 MHz			
frecuencias	Satélite: 900 - 2200 MHz			
Nivel de	Terrestre y Cable: 60~110 dBµV en pasos de 5 dB			
referencia	Satélite: 60 ~110 dBμV en pasos de 5 dB			
Precisión	±3 dB			

Span	Terrestre y Cable: 10, 20, 50, 100, 200, 500, 950 MHz			
Span	Satélite: 10, 20, 50, 10	0, 20, 50, 100, 200, 500, 1200 MHz		
Anchos de banda	Terrestre y Cable: 36,	72, 145, 291, 583, 1166 KHz		
de medida	Satélite: 100KHz, 2001	KHz, 500KHz, 1MHz, 2MHz, 5MHz		
Muestreo / FTT	1024 Puntos			
INTERFACES				
	HDMI 1.4 A			
Conectores	USB 2.0 (MAX 1 A)			
(perfil derecho)	RS232			
	Entrada DC			
Conectores (perfil superior)	Tuner / sintonizador	3 sintonizadores de entrada en un único conector (DVB-S/S2, DVB-T/ T2, DVB-C)		
	4 identificadores LED	On/Off, Carga, Lock, potencia RF		
Botones en panel frontal	24 botones	TV,Spectrum,Meter, Options, Menu, Band, Up, Down, Left, Right ,Enter, Esc, 0-9,., Power		
HOUSING	Dimensiones	269 mm (An.) x 187 mm (Al.) x 62.5 mm (Fo.)		
	Fuente de alimenta- ción externa	Adaptador 15 V-2,5 A		
	Cargador para coche	Si		
Accesorios	Bolsa de transporte	Incluida (espacio para herra- mientas y bolsillo exterior)		
	Adaptador F-F hembra	Si		

Anexo I. Definiciones

8PSK	"8-Phase Shift Keying". Codificación por desplazamiento de 8 fases. Modulación digital donde cada uno de los 8 símbolos transporta tres bits de información. Al ser una modulación de fase (robusta), se utiliza para canales como el satelital y se emplea para downlink en DVB-S2.
Banda C	Rango del espectro radioeléctrico destinado para transmisiones de broadcast en sentido descendiente comprendido entre 3,7 y 4,2 GHz. Las frecuencias de oscilador local para esta banda son: 5.150MHz y 5.750 MHz.
Banda DAB	Rango del espectro radioeléctrico terrestre destinado a transmisiones comerciales de radio digital. Las frecuencias asignadas en España son de 195 a 216 MHz (8A a 10D) y de 216 a 223 MHz (11A a 11D)
Banda FM	Rango del espectro radioeléctrico terrestre destinado a transmisiones comerciales de radio analógica. Comprende las frecuencias de 87,5 a 108 MHz.
Banda Ku	Rango del espectro radioeléctrico destinado para transmisiones de broadcast en sentido descendiente. En Europa comprende las frecuencias de 10,7 a 11,7 GHz (Banda baja) y 11,7 a 12,75 GHz (Banda alta). Las frecuencias de oscilador local para esta banda son: 9.750MHz y 10.750 MHz.
Banda UHF	Rango del espectro radioeléctrico comprendido entre 300 y 3000 MHz (3 GHz) emple- ado para transmisiones terrestres. En sistemas radiados típicamente se emplea para la difusión terrestre de señal de televisión y telefonía móvil.
Banda VHF	Rango del espectro radioeléctrico comprendido entre 30 y 300MHz empleado para transmisiones terrestres. Entre sus transmisiones encontramos: Comunicaciones aeronáuticas, marítimas, radio comercial analógica y digital. En entornos no radiados y conducidos mediante cable coaxial encontramos Docsis o Ekoax.
Bandas ISM	Rangos del espectro radioeléctrico definidos internacionalmente por la ITU destinados a aplicaciones industriales, científicas y médicas. Entre sus aplicaciones encontramos: 13,56 MHz (aeronáutica), 27,12 MHz (radioaficionados), 433,92 MHz (dispositivos de corto alcance y radioaficionados), 2,45 GHz y 5,8 GHz (Redes inalámbricas) o 245 GHz (Radiolocalización y astronomía)
CBER	Tasa de bits erróneos antes de aplicar correcciones. Se define como número de bits erróneos sobre el total de bits recibidos en el intervalo de medida. Interesa que tenga un valor bajo para que los errores sean mínimos. Como ejemplo, 4.3E-6 (4.3·10 ⁻⁶) es mejor que 2.7E-5 (2.7·10 ⁻⁶).
CCIR	"Comité consultatif international pour la radio". Comité consultivo internacional por la radio. Hoy en dia ITU-R (International Telecommunication Union - Radio). Es un organismo internacional con dependencia de la Organización de las Naciones Unidas (ONU) cuyo propósito es regular el espectro radioeléctrico, recursos orbitales y desarrollar estándares de telecomunicación para hacer un uso efectivo del espectro.
COFDM	"Coded Orthogonal Frequency Division Multiplexation". Multiplexación por división de frecuencias codificadas ortogonalmente. Método para el aprovechamiento de un canal frecuencial donde la información se reparte entre varias portadoras que no se interfieren.
Constelación	Representación gráfica de los símbolos que se reciben al demodular una modulación digital. Cada símbolo es un conjunto de bits. Según la densidad de la modulación, los símbolos están más agrupados (transportando más bits por unidad de tiempo) o más separados (aumentando la robustez de la señal frente a ruido e interferencias).
dBm	Nivel de potencia referenciado a 1mW expresado en dB. Su uso es común al hablar de transmisores y receptores de radiofrecuencia y al estar expresados en dB, de manera logarítmica, con pocos dígitos es posible representar un amplio rango de valores lineales.
dbμV	Nivel de tensión referenciado a 1uV expresado en dB. Es muy común en medidas en instalaciones de telecomunicación en redes de recepción. Al estar expresados en dB, de manera logarítmica, con pocos dígitos, es posible representar un amplio rango de valores lineales.
DCSS	"Digital Channel Stacking System". Solución para la distribución de varios transponders de satélite a varios receptores utilizando un mismo cable coaxial, independientemente de la banda y polaridad del transponder.

Dirección de			
red	Identificador de un equipo de red en un entorno TCP/IP que lo hace único en esta red.		
DiSEqC	"Digital Satellite Equipment Control". Protocolo de comunicación entre receptores satélite y equipos de distribución de señal satélite (LNB, Disego switches, multiswitches) pensado para controlar interruptores y motores de posicionamiento. Se basa en una señal pulsante de frecuencia 22 KHz y 0,65Vpp. Existen distintas versiones: 1.0 (Para 4 fuentes), 1.1 (Para 16 fuentes), 1.2 (Para 16 fuentes y un eje de giro). Los estándares 2.x añaden bidireccionalidad a los anteriores.		
DVB	"Digital Video Broadcasting". Estándar europeo para la difusión de video digital (Digital Audio Broadcasting). Representa un conjunto de estándares publicados conjuntamente por el ETSI, CENELC y el EBU.		
Espectro	Concepto físico que define la distribución energética de las ondas electromagnéticas. El espectro se extiende desde las frecuencias con menor longitud de onda (rayos gama) a frecuencias con mayor longitud de onda como las ondas de radio, pasando por la luz visible y los transmisiones de televisión terrestre.		
FDMA	"Frequency Division Multiple Access". Acceso al canal por división de frecuencia. Técnica para hacer un uso más eficiente del canal donde se usan distintas frecuencias para mandar una información.		
FEC	"Forward Error Correction". Corrección de errores en destino. Información adicional que se añada a una señal digital para hacerla robusta frente posibles errores de transmisión del canal. Un FEC de 2/3 significa que 1 de cada 3 bits es redundante. Aumenta la capacidad de demodulación del receptor pero disminuye la capacidad útil del canal.		
FTP	"File Transfer Protocol". Protocolo de comunicación para la transferencia de ficheros entre sistemas conectados a una red TCP/IP, basado en una arquitectura cliente-servidor.		
H.264	Norma que define un códec de vídeo de alta compresión, también conocido como MPEG-4 Parte 10 / AVC desarrollada por la ITU-T e ISO/IEC. Acepta resoluciones de hasta 4096x2304.		
H.265	Norma sucesora del H.264, también denominada MPEG-H Parte 2 y comúnmente HEVC ("High efficiency video coding"). Desarrollada por la ITU-T e ISO/IEC. Es compatible con video de ultra alta definición (UHD) aceptando resoluciones de hasta 8192x4320.		
IEEE	"Institute of Electrical and Electronics Engineers". Asociación profesional dedicada principalmente a la estandarización en los ámbitos tecnológicos de las telecomunicaci- ones, electrónica, informática, electricidad y afines.		
IF	"Intermediate frequency". Frecuencia intermedia que se genera en un demodulador. En el caso de las comunicaciones por satélite es el resultado de haber bajado una señal a alta frecuencia (transponder de la banda Ku) a una frecuencia comprendida entre los 950 y 2150 MHz.		
ITU-R	"International Telecommunication Union - Radio". Es un organismo internacional con de- pendencia de la Organización de las Naciones Unidas (ONU) cuyo propósito es regular el espectro radioeléctrico, recursos orbitales y desarrollar estándares de telecomunica- ción para hacer un uso efectivo del espectro.		
LCN	"Logical Channel Number". Identificador utilizado para el mapeo de un programa en una posición de un receptor DVB.		
Lte	"Long Term Evolution". Estándar para comunicaciones móviles de alta velocidad que permite picos de 300 y 75 Mbps de bajada y subida respectivamente. Su impacto en la difusión broadcast ha significado liberalizar bandas de frecuencia usadas para difusión broadcast para soportar estas transmisiones.		
Margen de ruido	En comunicaciones digitales, indica el nivel de ruido admisible antes de no poder demodular la señal		
Máscara de red	Patrón o número de bits que sirve, dada una dirección IP para identificar a la red y a los hosts conectados a esta red.		
	1		

MER	"Modulation Error Rate". Índice de error de modulación. Medida utilizada para cuantificar la calidad de una transmisión digital sobre el canal de transmisión. Relaciona lineal- mente la potencia de señal y la potencia de error y se expresa en dB. Efectos como el ruido, bajo rechazo de frecuencia imagen, ruido de fase, supresión de portadoras o la distorsión contribuyen a degradar la señal demodulada. Íntimamente ligado con la representación gráfica de la constelación.			
Modulación	En telecomunicaciones, es el proceso de variar algún parámetro de una señal porta- dora (frecuencia, amplitud o fase) en función de una señal moduladora. El resultado es una señal modulada, robusta para ser mandada al canal con la información de la moduladora.			
MPEG	"Motion Picture Experts Group", Grupo de expertos formado por la ISO / IEC para crear un conjunto de estándares para la compresión de video y audio.			
Multistream	En comunicaciones por satélite, recurso que ofrece DVB-S2 que permite agregar un número independiente de transport streams o streams IP de manera transparente.			
Mux (Múltiple)	En el contexto de la distribución vía DVB-T/T2, hace referencia a un canal frecuencial en el espectro. Su origen está en la combinación temporal de distintas fuentes de audio y video para conformar un único flujo de datos (PES) en banda base previo a ser modulado.			
Network ID	En DVB, identificador de la red de transporte.			
NIT	"Network Information Table". Tabla definida en el estándar DVB donde hay la informa- ción necesaria para la sintonización de los canales de un proveedor de servicio			
ONID	"Original Network ID". Identificador del operador de red que envía las transmisiones. Todos los operadores de un país deberían usar el mismo ONID.			
Paquetes erróneos	En el contexto de DVB, son paquetes de transport stream (TS) descartados pues no se han podido corregir tras una transmisión con errores.			
PID	"Packed Identifier". Campo de 13 bits de un transport stream (TS) que describe la información que transporta el paquete.			
PING	Herramienta utilizada en redes TCP/IP para el diagnóstico de su estado, calidad y velocidad. Al ejecutar un ping se lanzan paquetes entre dos hosts de una red.			
Polaridad	Ángulo que forma el campo electromagnético respecto el suelo a la hora se ser trans mitido desde una antena transmisora terrestre o satélite.			
QPSK	"Quadrature Phase Shift Keying". Modulación por desfasamiento de fase en cuadra- tura. Modulación digital que transporta dos bits por símbolo utilizada comúnmente en enlaces satélite.			
Resolución	Numero de píxeles en ambas dimensiones que una pantalla puede mostrar o contiene una fuente de video. Una resolución 1920x1080 indica 1920 píxeles por línea y un total de 1080 líneas.			
SID	"Service Identifier". Campo que identifica un servicio dentro de un transport stream (TS).			
SPAN	En el contexto de un analizador de espectros, ancho de banda frecuencial que se visualiza en pantalla.			
SSID	"Service Set Identifier". En redes de área local definidas por IEEE 802.11 define un conjunto de dispositivos de red que operan con los mismos parámetros de red inalámbrica.			
Symbol Rate	En comunicaciones, se refiere a la velocidad de símbolo (o baud rate). Mide la velocidad con la que grupos de bits son transmitidos.			
TDMA	"Time Division Multiple Access". Técnica de acceso al canal por división del tiempo. La información en banda base final es la combinación de otras informaciones combinadas en el tiempo.			
Tono 22 KHz	Señal empleada en la distribución de señal de satélite que permite la elección, por parte del receptor, de la banda baja o alta de un transponder de la banda Ku.			
Transponder	En telecomunicaciones, es un dispositivo que recibe una señal radioeléctrica, la procesa y la vuelve a enviar. Típicamente en redes, se emplea para definir un canal DVB-S/S2 de bajada.			

Transport Stream	En el contexto de audio y video, hace referencia a un contenedor de información donde se encapsulan distintos paquetes elementales con corrección de errores y sincronización
USB	"Universal Serial Bus". Bus de comunicación estándar para comunicar dispositivos electrónicos y alimentarlos eléctricamente. El estándar 3.0 permite una velocidad de transferencia de 4,8Gbps.
VBER	"Víterbi BER". Tasa de bits erróneos habiendo aplicado correcciones (Víterbi). Se define como número de bits erróneos sobre el total de bits recibidos en el intervalo de medida. Interesa que tenga un valor bajo para que los errores sean mínimos. Como ejemplo, 4.3E-6 (4.3·10°) es mejor que 2.7E-5 (2.7·10°).
Viterbi	Algoritmo para la decodificación de códigos convolucionales para determinar y corregir posibles errores de transmisión. Utilizado en transmisiones DVB-S/S2/T/T2/C. Se relaciona con el FEC.
WiFi	"Wireless Fidelity". Tecnología que permite la comunicación inalámbrica entre varios dispositivos que acoge un conjunto de estándares de la familia 802 del IEEE. Por ejemplo, 802.11n (Con un linkrate máximo de 72-600 Mbps) o el 802.11ax (con un linkrate máximo entre 600 y 9608 Mbps).
x-QAM	"Quadrature Amplitude Modulation". Modulación digital de amplitud en cuadratura. Modulación digital que transporta n símbolos (agrupaciones de bits). Suele emplearse en alta densidad 32, 64, 128, 256 en canales de transmisión robustos

Anexo II. Tabla de canales, frecuencias y medidas habituales

	Banda	CANAL	INICIO	FIN	FRECUENCIA CENTRAL
		2	47 MHz	54 MHz	50,50 MHz
	B-I	3	54 MHz	61 MHz	57,50 MHz
		4	61 MHz	68 MHz	64,50 MHz
	B-II (FM)	-	87,5 MHz	108 MHz	-
		S2	111 MHz	118 MHz	114,50 MHz
		S3	118 MHz	125 MHz	121,50 MHz
		S4	125 MHz	132 MHz	128,50 MHz
		S5	132 MHz	139 MHz	135,50 MHz
	S-Baja	S6	139 MHz	146 MHz	142,50 MHz
		S7	146 MHz	153 MHz	149,50 MHz
		S8	153 MHz	160 MHz	156,50 MHz
		S9	160 MHz	167 MHz	163,50 MHz
		S10	167 MHz	174 MHz	170,50 MHz
		5	174 MHz	181 MHz	177,50 MHz
		6	181 MHz	188 MHz	184,50 MHz
VHF (7 MHz)		7	188 MHz	195 MHz	191,50 MHz
(/ (/ (/ (/ (/ (/ (/ (/ (/ (/ (/ (/ (/ (B-III	8	195 MHz	202 MHz	198,50 MHz
	(DAB)	9	202 MHz	209 MHz	205,50 MHz
		10	209 MHz	216 MHz	212,50 MHz
		11	216 MHz	223 MHz	219,50 MHz
		12	223 MHz	230 MHz	226,50 MHz
		S11	230 MHz	237 MHz	233,50 MHz
		S12	237 MHz	244 MHz	240,50 MHz
		S13	244 MHz	251 MHz	247,50 MHz
		S14	251 MHz	258 MHz	254,50 MHz
	0.44-	S15	258 MHz	265 MHz	261,50 MHz
	S-Alta	S16	265 MHz	272 MHz	268,50 MHz
		S17	272 MHz	279 MHz	275,50 MHz
		S18	279 MHz	286 MHz	282,50 MHz
		S19	286 MHz	293 MHz	289,50 MHz
		S20	293 MHz	300 MHz	296,50 MHz
		S21	302 MHz	310 MHz	306 MHz
		S22	310 MHz	318 MHz	314 MHz
		S23	318 MHz	326 MHz	322 MHz
		S24	326 MHz	334 MHz	330 MHz
		S25	334 MHz	342 MHz	338 MHz
		S26	342 MHz	350 MHz	346 MHz
		S27	350 MHz	358 MHz	354 MHz
		S28	358 MHz	366 MHz	362 MHz
UHF	Lhanarbanda	S29	366 MHz	374 MHz	370 MHz
(8 MHz)	Hyperbanda	S30	374 MHz	382 MHz	378 MHz
		S31	382 MHz	390 MHz	386 MHz
		S32	390 MHz	398 MHz	394 MHz
		S33	398 MHz	406 MHz	402 MHz
		S34	406 MHz	414 MHz	410 MHz
		S35	414 MHz	422 MHz	418 MHz
		S36	422 MHz	430 MHz	426 MHz
		S37	430 MHz	438 MHz	434 MHz
		S38	438 MHz	446 MHz	442 MHz

	Banda	CANAL	INICIO	FIN	FRECUENCIA CENTRAL
		21	470 MHz	478 MHz	474 MHz
		22	478 MHz	486 MHz	482 MHz
		23	486 MHz	494 MHz	490 MHz
		24	494 MHz	502 MHz	498 MHz
		25	502 MHz	510 MHz	506 MHz
		26	510 MHz	518 MHz	514 MHz
		27	518 MHz	526 MHz	522 MHz
		28	526 MHz	534 MHz	530 MHz
	B-IV	29	534 MHz	542 MHz	538 MHz
		30	542 MHz	550 MHz	546 MHz
		31	550 MHz	558 MHz	554 MHz
		32	558 MHz	566 MHz	562 MHz
		33	566 MHz	574 MHz	570 MHz
		34	574 MHz	582 MHz	578 MHz
		35	582 MHz	590 MHz	586 MHz
		36	590 MHz	598 MHz	594 MHz
		37	598 MHz	606 MHz	602 MHz
		38	606 MHz	614 MHz	610 MHz
		39	614 MHz	622 MHz	618 MHz
		40	622 MHz	630 MHz	626 MHz
		41	630 MHz	638 MHz	634 MHz
		42	638 MHz	646 MHz	642 MHz
		43	646 MHz	654 MHz	650 MHz
		44	654 MHz	662 MHz	658 MHz
UHF (8 MHz)		45	662 MHz	670 MHz	666 MHz
(0 1411 12)		46	670 MHz	678 MHz	674 MHz
		47	678 MHz	686 MHz	682 MHz
		48	686 MHz	694 MHz	690 MHz
		49 (Lte2)	694 MHz	702 MHz	698 MHz
		50 (Lte2)	702 MHz	710 MHz	706 MHz
		51 (Lte2)	710 MHz	718 MHz	714 MHz
		52 (Lte2)	718 MHz	726 MHz	722 MHz
	D.V	53 (Lte2)	726 MHz	734 MHz	730 MHz
	B-V	54 (Lte2)	734 MHz	742 MHz	738 MHz
		55 (Lte2)	742 MHz	750 MHz	746 MHz
		56 (Lte2)	750 MHz	758 MHz	754 MHz
		57 (Lte2)	758 MHz	766 MHz	762 MHz
		58 (Lte2)	766 MHz	774 MHz	770 MHz
		59 (Lte2)	774 MHz	782 MHz	778 MHz
		60 (Lte2)	782 MHz	790 MHz	786 MHz
		61 (Lte1)	790 MHz	798 MHz	794 MHz
		62 (Lte1)	798 MHz	806 MHz	802 MHz
		63 (Lte1)	806 MHz	814 MHz	810 MHz
		64 (Lte1)	814 MHz	822 MHz	818 MHz
		65 (Lte1)	822 MHz	830 MHz	826 MHz
		66 (Lte1)	830 MHz	838 MHz	834 MHz
		67 (Lte1)	838 MHz	846 MHz	842 MHz
		68 (Lte1)	846 MHz	854 MHz	850 MHz
		69 (Lte1)	854 MHz	862 MHz	858 MHz

V1	V2	r=V2/V1	20 · log (V2/V1)
1 V	0,5 V	0,5	-6 dB
1 V	1 V	1	0 dB
1 V	2 V	2	6 dB
1 V	4 V	4	12 dB
1 V	6 V	6	16 dB
1 V	8 V	8	18 dB
1 V	10 V	10	20 dB
1 V	15 V	15	24 dB
1 V	20 V	20	26 dB
1 V	50 V	50	34 dB
1 V	100 V	100	40 dB
1 V	200 V	200	46 dB
1 V	500 V	500	54 dB
1 V	1.000 V	1.000	60 dB
1 V	2.000 V	2.000	66 dB
1 V	10.000 V	10.000	80 dB
1 V	20.000 V	20.000	86 dB
1 V	100.000 V	100.000	100 dB

TENSIÓN				POTENCIA (s	obre 75 Ω)
V	mV	μV	dΒμV	mW	dBm
4 V	4.000 mV	4.000.000 μV	132,0 dBµV	213,3 mW	23,3 dBm
2 V	2.000 mV	2.000.000 μV	126,0 dBµV	53,3 mW	17,3 dBm
1,5 V	1.500 mV	1.500.000 µV	123,5 dBµV	30 mW	14,8 dBm
1 V	1.000 mV	1.000.000 µV	120,0 dBµV	13,3 mW	11,2 dBm
0,5 V	500 mV	500.000 µV	114,0 dBµV	3,3 mW	5,2 dBm
0,10 V	100 mV	100.000 µV	100,0 dBµV	0,13 mW	-8,8 dBm
0,05 V	50 mV	50.000 μV	94,0 dBµV	33,33 uW	-14,8 dBm
0,01 V	10 mV	10.000 μV	80,0 dBµV	1,33 uW	-28,8 dBm
0,005 V	5 mV	5.000 μV	74,0 dBµV	0,33 uW	-34,8 dBm
0,001 V	1 mV	1.000 μV	60,0 dBµV	13,33 nW	-48,8 dBm
0,0005 V	1 mV	500 µV	54,0 dBµV	3,33 nW	-54,8 dBm
0,0001 V	0,1 mV	100 µV	40,0 dBµV	0,13 nW	-68,8 dBm
0,000050 V	0,05 mV	50 μV	34,0 dBµV	33,33 pW	-74,8 dBm

Número de canales	Reducción de nivel		
2	-3,0 dB		
3	-4,8 dB		
4	-6,0 dB		
5	-7,0 dB		
6	-7,8 dB		
7	-8,5 dB		
8	-9,0 dB		
9	-9,5 dB		
10	-10,0 dB		
11	-10,4 dB		
12	-10,8 dB		
13	-11,1 dB		
14	-11,5 dB		
15	-11,8 dB		
16	-12,0 dB		
17	-12,3 dB		
32	-15,1 dB		

Anexo III. Valores esperables en toma de usuario

		Radio Analógica (FM)	Radio Digital (DAB)	Terrestre	Satélite	Cable
Nivel de señal	dBµV	40 - 70	30 - 70	47 - 70		45 - 70
C/N	dB	≥38	≥18	≥25	DVB-S2 (QPSK) >12 DVB-S2 (8PSK) >14	≥28
MER	dB	-	-	>21 dB		
VBER	-	-	-	9E-5		9E-5

Anexo IV. Historial de actualizaciones

1.09.1660 Primera versión de software del medidor

EKSELANS by ITS ITS Partner 0.B.S. S.L

Av. Corts Catalanes 9-11 08173 Sant Cugat del Vallès Barcelona (España) Tel: +34 93 583 95 43 info@ek.plus www.ek.plus